37 research outputs found

    Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy

    Get PDF
    Introduction Despite the recognized importance of atrophy in multiple sclerosis (MS), methods for its quantification have been mostly restricted to the research domain. Recently, a CE labelled and FDA approved MS-specific atrophy quantification method, MSmetrix, has become commercially available. Here we perform a validation of MSmetrix against established methods in simulated and in vivo MRI data. Methods Whole-brain and gray matter (GM) volume were measured with the cross-sectional pipeline of MSmetrix and compared to the outcomes of FreeSurfer (cross-sectional pipeline), SIENAX and SPM. For this comparison we investigated 20 simulated brain images, as well as in vivo data from 100 MS patients and 20 matched healthy controls. In fifty of the MS patients a second time point was available. In this subgroup, we additionally analyzed the whole-brain and GM volume change using the longitudinal pipeline of MSmetrix and compared the results with those of FreeSurfer (longitudinal pipeline) and SIENA. Results In the simulated data, SIENAX displayed the smallest average deviation compared with the reference whole-brain volume (+ 19.56 ± 10.34 mL), followed by MSmetrix (− 38.15 ± 17.77 mL), SPM (− 42.99 ± 17.12 mL) and FreeSurfer (− 78.51 ± 12.68 mL). A similar pattern was seen in vivo. Among the cross-sectional methods, Deming regression analyses revealed proportional errors particularly in MSmetrix and SPM. The mean difference percentage brain volume change (PBVC) was lowest between longitudinal MSmetrix and SIENA (+ 0.16 ± 0.91%). A strong proportional error was present between longitudinal percentage gray matter volume change (PGVC) measures of MSmetrix and FreeSurfer (slope = 2.48). All longitudinal methods were sensitive to the MRI hardware upgrade that occurred during the time of the study. Conclusion MSmetrix, FreeSurfer, FSL and SPM show differences in atrophy measurements, even at the whole-brain level, that are large compared to typical atrophy rates observed in MS. Especially striking are the proportional errors between methods. Cross-sectional MSmetrix behaved similarly to SPM, both in terms of mean volume difference as well as proportional error. Longitudinal MSmetrix behaved most similar to SIENA. Our results indicate that brain volume measurement and normalization from T1-weighted images remains an unsolved problem that requires much more attention

    Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery

    Get PDF
    OBJECTIVE: To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. METHODS: Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. RESULTS: Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. CONCLUSIONS: This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery

    Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation

    Get PDF
    PURPOSE: Accurate lesion segmentation is important for measurements of lesion load and atrophy in subjects with multiple sclerosis (MS). International MS lesion challenges show a preference of convolutional neural networks (CNN) strategies, such as nicMSlesions. However, since the software is trained on fairly homogenous training data, we aimed to test the performance of nicMSlesions in an independent dataset with manual and other automatic lesion segmentations to determine whether this method is suitable for larger, multi-center studies. METHODS: Manual lesion segmentation was performed in fourteen subjects with MS on sagittal 3D FLAIR images from a 3T GE whole-body scanner with 8-channel head coil. We compared five different categories of automated lesion segmentation methods for their volumetric and spatial agreement with manual segmentation: (i) unsupervised, untrained (LesionTOADS); (ii) supervised, untrained (LST-LPA and nicMSlesions with default settings); (iii) supervised, untrained with threshold adjustment (LST-LPA optimized for current data); (iv) supervised, trained with leave-one-out cross-validation on fourteen subjects with MS (nicMSlesions and BIANCA); and (v) supervised, trained on a single subject with MS (nicMSlesions). Volumetric accuracy was determined by the intra-class correlation coefficient (ICC) and spatial accuracy by Dice's similarity index (SI). Volumes and SI were compared between methods using repeated measures ANOVA or Friedman tests with post-hoc pairwise comparison. RESULTS: The best volumetric and spatial agreement with manual was obtained with the supervised and trained methods nicMSlesions and BIANCA (ICC absolute agreement > 0.968 and median SI > 0.643) and the worst with the unsupervised, untrained method LesionTOADS (ICC absolute agreement = 0.140 and median SI = 0.444). Agreement with manual in the single-subject network training of nicMSlesions was poor for input with low lesion volumes (i.e. two subjects with lesion volumes ≤ 3.0 ml). For the other twelve subjects, ICC varied from 0.593 to 0.973 and median SI varied from 0.535 to 0.606. In all cases, the single-subject trained nicMSlesions segmentations outperformed LesionTOADS, and in almost all cases it also outperformed LST-LPA. CONCLUSION: Input from only one subject to re-train the deep learning CNN nicMSlesions is sufficient for adequate lesion segmentation, with on average higher volumetric and spatial agreement with manual than obtained with the untrained methods LesionTOADS and LST-LPA

    MRI Natural History of the Leukodystrophy Vanishing White Matter

    Get PDF
    Background: In vanishing white matter (VWM), a form of leukodystrophy, earlier onset is associated with faster clinical progression. MRI typically shows rarefaction and cystic destruction of the cerebral white matter. Information on the evolution of VWM according to age at onset is lacking. / Purpose: To determine whether nature and progression of cerebral white matter abnormalities in VWM differ according to age at onset. / Materials and Methods: Patients with genetically confirmed VWM were stratified into six groups according to age at onset: younger than 1 year, 1 year to younger than 2 years, 2 years to younger than 4 years, 4 years to younger than 8 years, 8 years to younger than 18 years, and 18 years or older. With institutional review board approval, all available MRI scans obtained between 1985 and 2019 were retrospectively analyzed with three methods: (a) ratio of the width of the lateral ventricles over the skull (ventricle-to-skull ratio [VSR]) was measured to estimate brain atrophy; (b) cerebral white matter was visually scored as percentage normal, hyperintense, rarefied, or cystic on fluid-attenuated inversion recovery (FLAIR) images and converted into a white matter decay score; and (c) the intracranial volume was segmented into normal-appearing white and gray matter, abnormal but structurally present (FLAIR-hyperintense) and rarefied or cystic (FLAIR-hypointense) white matter, and ventricular and extracerebral cerebrospinal fluid (CSF). Multilevel regression analyses with patient as a clustering variable were performed to account for the nested data structure. / Results: A total of 461 examinations in 270 patients (median age, 7 years [interquartile range, 3–18 years]; 144 female patients) were evaluated; 112 patients had undergone serial imaging. Patients with later onset had higher VSR [F(5) = 8.42; P < .001] and CSF volume [F(5) = 21.7; P < .001] and lower white matter decay score [F(5) = 4.68; P < .001] and rarefied or cystic white matter volume [F(5) = 13.3; P < .001]. Rate of progression of white matter decay scores [b = –1.6, t(109) = –3.9; P < .001] and VSRs [b = –0.05, t (109) = –3.7; P < .001] were lower with later onset. / Conclusion: A radiologic spectrum based on age at onset exists in vanishing white matter. The earlier the onset, the faster and more cystic the white matter decay, whereas with later onset, white matter atrophy and gliosis predominate

    Upper cervical cord atrophy is independent of cervical cord lesion volume in early multiple sclerosis: A two-year longitudinal study

    Get PDF
    Background: Upper cervical cord atrophy and lesions have been shown to be associated with disease and disability progression already in early relapsing-remitting multiple sclerosis (RRMS). However, their longitudinal relationship remains unclear. Objective: To investigate the cross-sectional and longitudinal relation between focal T2 cervical cord lesion volume (CCLV) and regional and global mean upper cervical cord area (UCCA), and their relations with disability. Methods: Over a two-year interval, subjects with RRMS (n = 36) and healthy controls (HC, n = 16) underwent annual clinical and MRI examinations. UCCA and CCLV were obtained from C1 through C4 level. Linear mixed model analysis was performed to investigate the relation between UCCA, CCLV, and disability over time. Results: UCCA at baseline was significantly lower in RRMS subjects compared to HCs (p = 0.003), but did not decrease faster over time (p ≥ 0.144). UCCA and CCLV were independent of each other at any of the time points or cervical levels, and over time. Lower baseline UCCA, but not CCLV, was related to worsening of both upper and lower extremities function over time. Conclusion: UCCA and CCLV are independent from each other, both cross-sectionally and longitudinally, in early MS. Lower UCCA, but not CCLV, was related to increasing disability over time

    Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study

    Get PDF
    Background Surgical resection and irradiation of diffuse glioma are guided by standard MRI: T2/FLAIR-weighted MRI for non-enhancing and T1-weighted gadolinium-enhanced (T1G) MRI for enhancing gliomas. Amino acid PET has been suggested as new standard. Imaging combinations may improve standard MRI and amino acid PET. The aim of the study was to determine the accuracy of imaging combinations to detect glioma infiltration. Methods We included 20 consecutive adults with newly-diagnosed non-enhancing (seven diffuse astrocytomas, IDH-mutant; one oligodendroglioma, IDH-mutant and1p/19q-codeleted; one glioblastoma IDH-wildtype) or enhancing glioma (glioblastoma, nine IDH-wildtype and two IDH-mutant). Standardized pre-operative imaging (T1-, T2-, FLAIR-weighted and T1G MRI, perfusion and diffusion MRI, MR spectroscopy and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET) was co-localized with multi-region stereotactic biopsies preceding resection. Tumor presence in the biopsies was assessed by two neuropathologists. Diagnostic accuracy was determined using receiver operating characteristic analysis. Results A total of 174 biopsies were obtained (63 from nine non-enhancing and 111 from 11 enhancing gliomas), of which 129 contained tumor (50 from non-enhancing and 79 from enhancing gliomas). In enhancing gliomas, the combination of Apparent Diffusion Coefficient (ADC) with [18F]FET PET (AUC, 95%CI: 0.89,0.79-0.99) detected tumor better than T1G MRI (0.56,0.39-0.72;P<.001) and [18F]FET PET (0.76,0.66-0.86;P=0.001). In non-enhancing gliomas, no imaging combination detected tumor significantly better than standard MRI. FLAIR-weighted MRI had an AUC of 0.81 (0.65-0.98) compared to 0.69 (0.56-0.81;P=0.019) for [18F]FET PET. Conclusion and relevance Combining ADC and [18F]FET PET detects glioma infiltration better than standard MRI and [18F]FET PET in enhancing gliomas, potentially enabling better guidance of local therapy

    Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): High reproducibility and robustness to lesions, but large software and scanner effects

    Get PDF
    INTRODUCTION: Atrophy of the spinal cord is known to occur in multiple sclerosis (MS). The mean upper cervical cord area (MUCCA) can be used to measure this atrophy. Currently, several (semi-)automated methods for MUCCA measurement exist, but validation in clinical magnetic resonance (MR) images is lacking. METHODS: Five methods to measure MUCCA (SCT-PropSeg, SCT-DeepSeg, NeuroQLab, Xinapse JIM and ITK-SNAP) were investigated in a predefined upper cervical cord region. First, within-scanner reproducibility and between-scanner robustness were assessed using intra-class correlation coefficient (ICC) and Dice's similarity index (SI) in scan-rescan 3DT1-weighted images (brain, including cervical spine using a head coil) performed on three 3 T MR machines (GE MR750, Philips Ingenuity, Toshiba Vantage Titan) in 21 subjects with MS and 6 healthy controls (dataset A). Second, sensitivity of MUCCA measurement to lesions in the upper cervical cord was assessed with cervical 3D T1-weighted images (3 T GE HDxT using a head-neck-spine coil) in 7 subjects with MS without and 14 subjects with MS with cervical lesions (dataset B), using ICC and SI with manual reference segmentations. RESULTS: In dataset A, MUCCA differed between MR machines (p  0.176). However, there was an effect of method for both volumetric and voxel wise agreement of the segmentations (both p < 0.001). Highest volumetric and voxel wise agreement was obtained with Xinapse JIM (ICC absolute agreement = 0.940 and median SI = 0.962). CONCLUSION: Although MUCCA is highly reproducible within a scanner for each individual measurement method, MUCCA differs between scanners and between methods. Cervical cord lesions do not affect MUCCA measurement performance

    Spatial concordance of DNA methylation classification in diffuse glioma

    Get PDF
    BACKGROUND: Intratumoral heterogeneity is a hallmark of diffuse gliomas. DNA methylation profiling is an emerging approach in the clinical classification of brain tumors. The goal of this study is to investigate the effects of intratumoral heterogeneity on classification confidence. METHODS: We used neuronavigation to acquire 133 image-guided and spatially separated stereotactic biopsy samples from 16 adult patients with a diffuse glioma (7 IDH-wildtype and 2 IDH-mutant glioblastoma, 6 diffuse astrocytoma, IDH-mutant and 1 oligodendroglioma, IDH-mutant and 1p19q codeleted), which we characterized using DNA methylation arrays. Samples were obtained from regions with and without abnormalities on contrast-enhanced T1-weighted and fluid-attenuated inversion recovery MRI. Methylation profiles were analyzed to devise a 3-dimensional reconstruction of (epi)genetic heterogeneity. Tumor purity was assessed from clonal methylation sites. RESULTS: Molecular aberrations indicated that tumor was found outside imaging abnormalities, underlining the infiltrative nature of this tumor and the limitations of current routine imaging modalities. We demonstrate that tumor purity is highly variable between samples and explains a substantial part of apparent epigenetic spatial heterogeneity. We observed that DNA methylation subtypes are often, but not always, conserved in space taking tumor purity and prediction accuracy into account. CONCLUSION: Our results underscore the infiltrative nature of diffuse gliomas and suggest that DNA methylation subtypes are relatively concordant in this tumor type, although some heterogeneity exists

    Direct comparison of [11C] choline and [18F] FET PET to detect glioma infiltration: a diagnostic accuracy study in eight patients

    Get PDF
    Background Positron emission tomography (PET) is increasingly used to guide local treatment in glioma. The purpose of this study was a direct comparison of two potential tracers for detecting glioma infiltration, O-(2-[18F]-fluoroethyl)-l-tyrosine ([18F] FET) and [11C] choline. Methods Eight consecutive patients with newly diagnosed diffuse glioma underwent dynamic [11C] choline and [18F] FET PET scans. Preceding craniotomy, multiple stereotactic biopsies were obtained from regions inside and outside PET abnormalities. Biopsies were assessed independently for tumour presence by two neuropathologists. Imaging measurements were derived at the biopsy locations from 10 to 40 min [11C] choline and 20–40, 40–60 and 60–90 min [18F] FET intervals, as standardized uptake value (SUV) and tumour-to-brain ratio (TBR). Diagnostic accuracies of both tracers were compared using receiver operating characteristic analysis and generalized linear mixed modelling with consensus histopathological assessment as reference. Results Of the 74 biopsies, 54 (73%) contained tumour. [11C] choline SUV and [18F] FET SUV and TBR at all intervals were higher in tumour than in normal samples. For [18F] FET, the diagnostic accuracy of TBR was higher than that of SUV for intervals 40–60 min (area under the curve: 0.88 versus 0.81, p = 0.026) and 60–90 min (0.90 versus 0.81, p = 0.047). The diagnostic accuracy of [18F] FET TBR 60–90 min was higher than that of [11C] choline SUV 20–40 min (0.87 versus 0.67, p = 0.005). Conclusions [18F] FET was more accurate than [11C] choline for detecting glioma infiltration. Highest accuracy was found for [18F] FET TBR for the interval 60–90 min post-injection

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
    corecore